Физика 57-77


50 Физи́ческая кине́тика (др.-греч. κίνησις — движение) — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрические и магнитные проницаемости и другие характеристики сплошных сред. Физическая кинетика включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистическую теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах (диэлектриках, металлах и полупроводниках) и жидкостях, кинетику магнитных процессов и теорию кинетических явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.

Если известна функция распределения всех частиц системы по их координатам и импульсам в зависимости от времени (в квантовом случае — матрица плотности), то можно вычислить все характеристики неравновесной системы. Вычисление полной функции распределения является практически неразрешимой задачей, но для определения многих свойств физических систем, например, потока энергии или импульса, достаточно знать функцию распределения небольшого числа частиц, а для газов малой плотности — одной частицы.

В кинетике используется существенное различие времён релаксации в неравновесных процессах; например, для газа из частиц или квазичастиц, время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния функцией распределения по всем координатам и импульсам к сокращённому описанию при помощи функции распределения одной частицы по её координатам и импульсам.

ПЕРЕНОСА ЯВЛЕНИЯ

- неравновесные процессы, в результате к-рых в физ. системе происходит пространственный перенос электрич. заряда, вещества, импульса, энергии, энтропии или к.-л. <др. физ. величины. Общую феноменологич. теорию П. я., применимую к любой системе (газообразной, жидкой или твёрдой), даёт термодинамика неравновесных процессов. Более детально П. я. изучает кинетика физическая. П. <я. в газах рассматриваются на основе кинетической теории газов с помощью кинетического уравнения Больцмана для ф-цни распределения молекул; П. я. в металлах- на основе кинетич. ур-ния для электронов в металле; перенос энергии вне проводящих кристаллах — с помощью кинетич. ур-ния для фононов кристаллич. <решётки. Общая теория П. я. развивается в неравно-весной статистич. Механи кена основе Лиувилля уравнения для ф-ции распределения всех частиц, <из к-рых состоит система (см. Грина — Кубо формулы).Причина П. я. — возмущения, нарушающие состояние термо динамич. равновесия: действие внеш. элек-трич. поля, наличие пространств. неоднородностей состава, темп-ры или ср. скорости движения частиц системы. Перенос физ. величины происходит в направлении, обратно меё градиенту, в результате чего изолированная от внеш. воздействий система приближается к состоянию термо динамич. равновесия. Если внеш. Воздействия поддерживаются постоянными, П. я. протекают стационарно.П. я. характеризуются необратимыми потоками Ji физ. величины, напр. диффузионным потоком вещества, <тепловым потоком или тензором потока импульса, связанного с градиентам искоростей. При малых отклонениях системы от термодинамич. равновесия потоки линейно зависят от термодинамич. сил Хk, вызывающих отклонение от термодинамич. равновесия, и описываются феноменологич. ур-ниями

где Lik — феноменологич. <коэф. переноса (в термодинамике неравновесных процессов) или кинетические коэффициенты (в физ. кинетике), вычисляемые с помощью решения кинетич. <ур-ний. Термо динамич. силы Хk вызывают необратимыепотоки; напр., градиент темп-ры вызывает поток теплоты ( теплопроводность), градиент концентрации вещества — поток компонента смеси ( диффузия), градиент массовой скорости — поток импульса (вязкое течение; см. Вязкость).Перенос вещества, вызванный градиентом темп-ры, — термодиффузию и обратный ей процесс переноса тепла вследствие градиента концентрации (Дюфура эффект )называют перекрёстными процессами. <Для перекрёстных процессов в отсутствии магн. поля имеет место соотношение симметрии Lik = Lki( Онсагера теорема), являющееся следствием микроскопич. обратимости ур-ний, описывающих движение частиц. Если магн. поле отлично от нуля, то при замене ik нужно изменить направление магн. поля на противоположное.П. я. обычно сопровождаются производство мэнтропии в единицу времени:

Диффу́зия (лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму[1]. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (по градиенту концентрации).

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы.

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи, однако иногда диффузионными называют также другие процессы переноса: теплопроводность, вязкое трение и т. п.

Первый Ф. з. устанавливает пропорциональность диффузионного потока j в идеальных растворах градиенту концентрации ?c:j =-D?c (D — коэфф. диффузии). Второй Ф. з. получается из первого и ур-ния непрерывности:

где t — время, х, у, z — пространств. координаты. Если D = const, то второй Ф. з. имеет вид

дc/дt=D?c

и наз. ур-нием диффузии. Открыты нем. учёным А. Фиком (A. Fick) в 1855.

51 Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Иногда теплопроводностью называется также количественная характеристика способности конкретного вещества проводить тепло. Численно эта характеристика равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании их температуры.

Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011−1012 Па·с

Прибор для измерения вязкости называется вискозиметром

52 Диффу́зия (лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму[1]. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (по градиенту концентрации).

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы.

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи, однако иногда диффузионными называют также другие процессы переноса: теплопроводность, вязкое трение и т. п.

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Иногда теплопроводностью называется также количественная характеристика способности конкретного вещества проводить тепло. Численно эта характеристика равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании их температуры.

Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011−1012 Па·с

Прибор для измерения вязкости называется вискозиметром.

53Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;

взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[1]

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые — притягиваются

Напряжённость электри́ческого по́лявекторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря — разное[3] в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон.

При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.

Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

54 поток векторного поля через поверхностьповерхностный интеграл первого рода по поверхности . По определению

где — векторное поле (вектор-функция векторного аргумента — точки пространства), единичный вектор положительной нормали к поверхности (положительное направление выбирается для ориентируемой поверхности условно, но одинаково для всех точек — то есть для дифференцируемой поверхности — так, чтобы было непрерывно; для неориентируемой поверхности это не важно, так как поток через неё всегда ноль), — элемент поверхности.

Физическая интерпретация

Пусть движение несжимаемой жидкости единичной плотности в пространстве задано векторным полем скорости течения . Тогда объем жидкости, который протечёт за единицу времени через поверхность , будет равен потоку векторного поля через поверхность

Теорема Гаусса (закон Гаусса) — один из основных законов электродинамики, входит в систему уравнений Максвелла. Выражает связь (а именно равенство с точностью до постоянного коэффициента) между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченном этой поверхностью. Применяется отдельно для вычисления электростатических полей.

Аналогичная теорема, также входящая в число уравнений Максвелла, существует и для магнитного поля (см. ниже).

Также теорема Гаусса верна для любых полей, для которых верен закон Кулона или его аналог (например, для ньютоновской гравитации). При этом она является, как принято считать, более фундаментальной, так как позволяет в частности вывести степень расстояния[1] в законе Кулона «из первых принципов», а не постулировать ее (или не находить эмпирически).

В этом можно видеть фундаментальное значение теоремы Гаусса (закона Гаусса) в теоретической физике.

Существуют аналоги (обобщения) теоремы Гаусса и для более сложных полевых теорий, чем электродинамика

Общая формулировка: Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

где

— поток вектора напряжённости электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объёме, который ограничивает поверхность .

электрическая постоянная. 57 Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться. Перемещение зарядов (ток) продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напряженность поля во всех точках внутри проводника равна нулю:

Отсутствие поля внутри проводника означает, согласно, что потенциал во всех точках внутри проводника постоянен ( = const), т. е. поверхность проводника в электростатическом поле является эквипотенциальной. Отсюда же следует, что вектор напряженности поля на внешней поверхности проводника направлен по нормали к каждой точке его поверхности. Если бы это было не так, то под действием касательной составляющей Е заряды начали бы по поверхности проводника перемещаться, что, в свою очередь, противоречило бы равновесному распределению зарядов.

Если проводнику сообщить некоторый заряд Q, то нескомпенсированные заряды располагаются только на поверхности проводника. Это следует непосредственно из теоремы Гаусса (89.3), согласно которой заряд Q, находящийся внутри проводника в некотором объеме, ограниченном произвольной замкнутой поверхностью, равен

так как во всех точках внутри поверхности D=0.

Электростатическая индукция — явление наведения собственного электростатического поля, при действии на тело внешнего электрического поля. Явление обусловлено перераспределением зарядов внутри проводящих тел, а также поляризацией внутренних микроструктур[1] у непроводящих тел. Внешнее электрическое поле может значительно исказиться вблизи тела с индуцированным электрическим полем.

58 Электри́ческий ди́польный моме́нтвекторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей. Главная после суммарного заряда и положения системы в целом (ее радиус-вектора) характеристика конфигурации зарядов системы при наблюдении ее издали.

Дипольный момент — первый мультипольный момент.

Простейшая система зарядов, имеющая определенный (не зависящий от выбора начала координат) ненулевой дипольный момент — это диполь (две точечные частицы с одинаковыми по величине разноимёнными зарядами). Электрический дипольный момент такой системы по модулю равен произведению величины положительного заряда на расстояние между зарядами и направлен от отрицательного заряда к положительному, или:

— где q — величина положительного заряда, — вектор с началом в отрицательном заряде и концом в положительном.

Для системы из N частиц электрический дипольный момент равен

где — заряд частицы с номером а — её радиус-вектор; или, если суммировать отдельно по положительным и отрицательным зарядам:

где — число положительно/отрицательно заряженных частиц, — их заряды; — суммарные заряды положительной и отрицательной подсистем и радиус-векторы их «центров тяжести».

момент и потенциальная энергия диполя ???

59 Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле с напряженностью Е1, направленное против внешнего поля с напряженностью Е0. Результирующая напряженность поля Е внутри диэлектрика Е=Е01.

Напряженность электрического поля в диэлектрике

Для количественного описания поля в диэлектриках внесем диэлектрик в однородное электростатическое поле. Поле создается двумя бесконечными равномерно заряженными плоскостями. Пластинка из однородного диэлектрика расположена как на рис. 2.4.

Заряды, входящие в состав диполей диэлектриков, называются связанными. Под действием электрического поля они не могут покинуть пределов молекулы, в состав которой входят, а лишь смещаются из своих положений равновесия. Поляризация диэлектриков сопровождается появлением поверхностных зарядов на его границах.

В тех местах, где линии напряженности выходят из диэлектрика, на поверхности возникают положительные связанные заряды, то есть положительные заряды смещаются по полю, отрицательные –против поля (рис. 2.4) Таким образом, на правой грани диэлектрика, обращенного к отрицательной плоскости, будет избыток положительного заряда с поверхностной плотностью (+), а на левой – избыток отрицательного заряда с поверхностной плотностью (–). Плотность связанных зарядов определяет поляризованность диэлектрика: .

Таким образом, появление нескомпенсированных поверхностных связанных зарядов приводит к возникновению внутри диэлектрика дополнительного электрического поля с напряженностью (поле, созданное двумя бесконечными заряженными плоскостями, т.е. гранями), которое направлено против внешнего поля и ослабляет его

.(2.4)

Внешнее поле – это поле, созданное свободными зарядами, в данном случае бесконечными заряженными пластинами.

Напряженность внешнего поля определяется по формуле

.(2.5)

Результирующая напряженность поля внутри диэлектрика равна:

или в скалярном виде с учетом направления

.(2.6)

Напряженность электрического поля определяется всеми зарядами: и сторонними , и связанными . С учетом (2.4) и (2.5) можно записать

.

электри́ческое смеще́ние) — векторная величина, равная сумме вектора напряжённости электрического поля и вектора поляризации.

В СИ: .

В СГС: .

Величина электрической индукции в системе СГС измеряется в СГСЭ или СГСМ единицах, а в СИ — в кулонах на м² (L−2TI). В рамках СТО векторы и объединяются в единый тензор, аналогичный тензору электромагнитного поля.

60Электроемкость*

— Это отношение количества электричества, имеющегося на каком-либо проводящем теле, к величине потенциала этого тела при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землей. Обозначая Э. тела через С, заряд на теле через Q и потенциал через V, имеем C = Q/V.

Практической единицей Э. принимается ныне фарада или, еще чаще, миллионная доля фарады, называемая микрофарадой. Фарада обозначается обыкновенно через F, микрофарада — через μ F. Фарада — это электроемкость такого тела, в котором при потенциале равном 1 вольту, содержится один кулон электричества.

Для сравнения электроемкостей тел существует несколько способов. Упомянем только о трех, наиболее часто употребляемых.

В настоящее время имеются ящики электроемкостей, т. е. ящики, содержащие в себе конденсаторы различных электроемкостей, долей микрофарады, а также целых микрофарад, которые можно комбинировать в желаемые группы. Сами конденсаторы изготовляются из тонких листов олова (станиоль), отделенных друг от друга листами парафинированной бумаги, и заливаются парафином.

Различные типы конденсаторов.

заряжая любой изолированный проводник, мы одновременно создаем противоположный заряд на окружающих проводниках, соединенных с Землей и образующих вместе с этим телом конденсатор. Однако емкость такого конденсатора мала. Чтобы получить большую емкость, необходимо взять проводники в виде металлических пластин, возможно близко расположенных друг к другу (так называемые обкладки конденсатора). Мы видели, что емкость плоского конденсатора прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними. Поэтому при большой поверхности обкладок и при тонком слое диэлектрика между ними емкость конденсатора очень велика, и на нем можно накопить («сгустить») значительные заряды даже при небольшом напряжении. Отсюда происходит и название «конденсатор» (от латинского слова condensare — сгущать). Для увеличения емкости конденсаторы соединяют в батареи. На рис. 60 изображена батарея из четырех лейденских банок. Все внешние и все внутренние обкладки Рис. 60. Батарея из четырех лейденских банок: 1 — стержень для зарядки внутренних обкладок, 2 — стержень для заземления внешних обкладокРис. 61. Конденсатор переменной емкости состоит из двух изолированных систем металлических пластин 1 и 2, которые входят друг в друга при вращении рукояткисоединены между собой, и поэтому батарею можно рассматривать как один большой конденсатор, у которого площадь обкладок равна сумме площадей обкладок отдельных банок. Емкость батареи при таком соединении (оно называется параллельным соединением) равна сумме емкостей отдельных конденсаторов.На рис. 61 показан конденсатор переменной емкости, широко употребляющийся в радиотехнике. Он состоит из двух изолированных систем металлических пластин, которые входят друг в друга при вращении рукоятки. Вдвигание и выдвигание одной системы пластин в другую изменяют емкость конденсатора (§ 33).61 Энергия системы зарядов

Энергия взаимодействия системы точечных зарядов, вычисляемая по формуле (3), может быть как положительной, так и отрицательной. Например она отрицательная для двух точечных зарядов противоположного знака.

Формула (3) определяет не полную электростатическую энергию системы точечных зарядов, а только их взаимную потенциальную энергию. Каждый заряд qi, взятый в отдельности обладает электрической энергией. Она называется собственной энергией заряда и представляет собой энергию взаимного отталкивания бесконечно малых частей, на которые его можно мысленно разбить. Эта энергия не учитывается в формуле (3). Учитывается только работа затрачиваемая на сближение зарядов qi, но не на их образование.

Полная электростатическая энергия системы точечных зарядов учитывает также работу, на образование зарядов qiиз бесконечно малых порций электричества, переносимых из бесконечности. Полная электростатическая энергия системы зарядов всегда положительная. Это легко показать на примере заряженного проводника. Рассматривая заряженный проводник как систему точечных зарядов и учитывая одинаковое значение потенциала в любой точке проводника, из формулы (3) получим:

. (4) , (3)

Энергия заряженного проводника

Как известно, заряд сосредоточивается на поверхности проводника, причем поверхность проводника эквипотенциальна. Разбивая эту поверхность на маленькие участки, каждый из которых имеет заряд Δq, и учитывая, что потенциал в месте расположения каждого из зарядов одинаков, имеем

(6.7)

Так как емкость проводника C=q/φ , то выражение (6.7) может быть также представлено, как

(6.8)

Энергия заряженного конденсатора

Пусть заряд +q находится на обкладке с потенциалом φ1 а заряд -q на обкладке с потенциалом φ2. Тогда на основании тех же рассуждений, которые привели к выражению (6.7), получим

(6.9)

где U — разность потенциалов на обкладках конденсатора. Аналогично переходу от (6.7) к (6.8) выражение для энергии конденсатора может быть представлено также в виде

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также возникающий при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического полявекторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Сила Лоренца описывает воздействие электромагнитного поля на частицу.

Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где Eнапряжённость электрического поля, Dиндукция электрического поля.

62 Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил (). В замкнутом контуре () тогда ЭДС будет равна:

, где — элемент длины контура.

ЭДС так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.

[править] ЭДС индукции

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца)

. Электри́ческий ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводникахэлектроны, в электролитахионы (катионы и анионы), в газахионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

63СОПРОТИВЛЕНИЕ ПРОВОДНИКОВ

Направленному движению электронов (электрическому току) мешают хаотически двигающиеся молекулы и атомы проводника, что приводит к искривлению пути электронов и уменьшает скорость их передвижения. Следовательно, электрический ток, проходя по проводнику, всегда испытывает со стороны проводника препятствие своему прохождению. Это препятствие называется электрическим сопротивлением проводника и обозначается латинской буквой R. На схемах электрическое сопротивление обозначается так, как показано на рис. 5,а.

Чем длиннее проводник и чем меньше его сечение, тем большее сопротивление току он создает. Короткие проводники большого сечения имеют малое сопротивление. Сопротивление проводника зависит также от материала, из которого он сделан. Два проводника одинаковой длины и поперечного сечения, но изготовленные из разных материалов, будут по-разному проводить электрический ток. Сопротивление проводника также зависит от его температуры. С повышением температуры сопротивление металлов увеличивается. Исключение составляют специальные металлические сплавы (манганин, константан, никелин и др.), сопротивление которых почти не меняется с изменением температуры. Таким образом, установлено, что сопротивление проводника зависит от его длины, поперечного сечения, материала, из которого он сделан, и температуры. Характеристикой способности различных материалов проводить электрический ток служит их удельное сопротивление, обозначаемое греческой буквой р (ро) и выражаемое в омах.

Удельным сопротивлением какого-либо материала называется сопротивление проводника, сделанного из этого материала и имеющего длину 1 м, а поперечное сечение 1 мм2 при температуре 20° С. Удельное сопротивление различных материалов различно; оно определяется опытным путем и приводится в справочных таблицах. Сопротивление любого проводника можно определить расчетным путем по формуле:

где R — сопротивление проводника, ом\

р —удельное сопротивление проводника;

I — длина проводника в метрах; 5 —сечение проводника, мм2.

Мощность и работа тока

Энергия электрического тока может превращаться в какую-либо другую энергию (например, в тепловую, световую, механическую). Ток может производить работу, поэтому электрическая мощность — это работа, которую электрический ток совершает в одну секунду. Мощность тока в один ампер при напряжении в один вольт принята за единицу мощности и названа ваттом (вт). Мощность увеличивается при увеличении тока или напряжения или и того и другого вместе. Чтобы определить мощность постоянного тока в ваттах, надо напряжение в вольтах умножить на ток в амперах:

P = U*I.

Основной единицей для измерения работы тока является ватт-секунда (вт-сек), или джоуль. Это работа тока мощностью в один ватт в течение одной секунды. Единица эта очень мала и поэтому применяют более крупные единицы: ватт-часы (вт-ч); гектоватт-часы (гвт-ч) и киловатт-часы (квт-ч).

Для расчета расхода электроэнергии надо мощность умножить на время.

Закон Джоуля-Ленца в интегральной и дифференциальной формах

Q = A = U × I × t = I2 × R × t. (6.15)

Закон о тепловом эффекте электрического тока (6.15) был экспериментально установлен независимо английским учёным Д. Джоулем и русским академиком Э.Х. Ленцем. Формула (6.15) — математическая запись закона Джоуля-Ленца в интегральной форме, позволяющая вычислить количество теплоты, выделяющейся в проводнике. Для того, чтобы характеризовать тепловой эффект тока в различных точках проводника, выделим в нём элементарный участок трубки тока (рис. 6.8.). Запишем для этого элемента закон Джоуля-Ленца:

Закон Джоуля-Ленца: в интегральной форме: Q = I2 × R × t; в дифференциальной форме: Руд =  × Е2=.

64 Классическая теория электропроводности металлов (теория Друде-Лоренца).

Электроны в металле рассматриваются как электронный газ, к которому можно применить кинетическую теорию газов. Считается, что электроны, как и атомы газа в кинетической теории, представляют собой одинаковые твердые сферы, которые движутся по прямым линиям до тех пор, пока не столкнутся друг с другом. Предполагается, что продолжительность отдельного столкновения пренебрежимо мала, и что между молекулами не действует никаких иных сил, кроме возникающих в момент столкновения. Так как электрон — отрицательно заряженная частица, то для соблюдения условия электронейтральности в твердом теле также должны быть частицы другого сорта — положительно заряженные. Друде предположил, что компенсирующий положительный заряд принадлежит гораздо более тяжелым частицам (ионам), которые он считал неподвижными. Во времена Друде не было ясно, почему в металле существуют свободные электроны и положительно заряженные ионы, и что эти ионы собой представляют. Ответы на эти вопросы смогла дать только квантовая теория твердого тела. Для многих веществ, однако, можно просто считать, что электронный газ составляют слабо связанные с ядром внешние валентные электроны, которые в металле «освобождаются» и получают возможность свободно передвигаться по металлу, тогда как атомные ядра с электронами внутренних оболочек (атомные остовы) остаются неизменными и играют роль неподвижных положительных ионов теории Друде.

. Несмотря на то, что плотность газа электронов проводимости примерно в 1000 раз больше плотности классического газа при нормальных температуре и давлении, и несмотря на присутствие сильного электрон-электронного и электрон-ионного взаимодействия в модели Друде для рассмотрения электронного газа в металлах почти без изменений применяются методы кинетической теории нейтральных разреженных газов.

Основные предположения теории Друде.

В интервале между столкновениями не учитывается взаимодействие электрона с другими электронами и ионами. Иными словами, принимается, что в отсутствие внешних электромагнитных полей каждый электрон движется с постоянной скоростью по прямой линии. Далее, считают, что в присутствии внешних полей электрон движется в соответствии с законами Ньютона; при этом учитывают влияние только этих полей, пренебрегая сложными дополнительными полями, порождаемыми другими электронами и ионами. Приближение, в котором пренебрегают электрон-электронным взаимодействием в промежутках между столкновениями, известно под названием приближения независимых электронов. Соответственно приближение, в котором пренебрегают электрон-ионным взаимодействием, называется приближением свободных электронов.

В модели Друде, как и в кинетической теории, столкновения — это мгновенные события, внезапно меняющие скорость электрона. Друде связывал их с тем, что электроны отскакивают от непроницаемых сердцевин ионов (а не считал их электрон-электронными столкновениями по аналогии с доминирующим механизмом столкновений в обычном газе).

Предполагается, что за единицу времени электрон испытывает столкновение (т. е. внезапное изменение скорости) с вероятностью, равной . Имеется в виду, что для электрона вероятность испытать столкновение в течение бесконечно малого промежутка времени равна просто . Время называют временем релаксации, или временем свободного пробега; оно играет фундаментальную роль в теории проводимости металлов. Из этого предположения следует, что электрон, выбранный наугад в настоящий момент времени, будет двигаться в среднем в течение времени до его следующего столкновения и уже двигался в среднем в течение времени с момента предыдущего столкновения. В простейших приложениях модели Друде считают, что время релаксации не зависит от пространственного положения электрона и его скорости.

Предполагается, что электроны приходят в состояние теплового равновесия со своим окружением исключительно благодаря столкновениям. Считается, что столкновения поддерживают локальное термодинамическое равновесие чрезвычайно простым способом: скорость электрона сразу же после столкновения не связана с его скоростью до столкновения, а направлена случайным образом, причем ее величина соответствует той температуре, которая превалирует в области, где происходило столкновение. Поэтому чем более горячей является область, где происходит столкновение, тем большей скоростью обладает электрон после столкновения



Кинетическое уравнение Больцмана в приближении времени релаксации приводит для проводимости электронного газа к формуле Друде:

Полученная формула выражает закон Ома в дифференциальной форме. Здесь - коэффициент пропорциональности, проводимость металла. Если бы не было столкновений между электронами и ионами решетки, то проводимость была бы бесконечной. Определим температурную зависимость проводимости. Концентрация электронов и длина свободного пробега не должны зависеть от температуры. От температуры зависит только средняя скорость теплового движения. . Следовательно, проводимость обратно пропорциональна корню из Т, а сопротивление возрастает как корень из Т. Эксперимент показывает, что сопротивление в широком интервале температур пропорционально температуре, и только при низких температура турах . Таким образом, теория проводимости металлов Друде-Лоренца, приводя к закону Ома, не может объяснить температурной зависимости сопротивления. Объяснение может дать только квантовая теория. , (5)закон Джоуля-ЛенцаЗакон Джоуля — Ленцафизический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем[1].

В словесной формулировке звучит следующим образом[2]

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля

Математически может быть выражен в следующей форме:

где — мощность выделения тепла в единице объёма, — плотность электрического тока, напряжённость электрического поля, σпроводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[3]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка

В математической форме этот закон имеет вид



Страницы: Первая | 1 | 2 | 3 | Вперед → | Последняя | Весь текст


Предыдущий:

Следующий: