Физика 1-56


Основные кинематические характеристики поступательного движения.

Поступательное движение – это такое движение, при котором любая прямая, связанная с движущимся телом, остаётся параллельной самой себе.

Путь – это длинна участка траектории с момента начала отсчёта времени и до окончания.

Перемещение – это вектор, проведенный из начального положения в конечное положение в данный момент времени.

Скорость – величина, которая вводится для характеристики движения материальной точки. Бывает средняя и мгновенная.

Ускорение — это векторная величина, определяемая первой производной скорости по времени.

Нормальное и тангенциальное ускорения.

При криволинейном движении скорость направлена по касательной к траектории.

Поскольку направление скорости постоянно изменяется, то криволинейное движение — всегда движение с ускорением, в том числе, когда модуль скорости остается неизменным

Кинематические характеристики поступательного движения

В общем случае ускорение направлено под углом к скорости. Составляющая ускорения, направленная вдоль скорости, называется тангенциальным ускорением Кинематические характеристики поступательного движения. Она характеризует изменение скорости по модулю.

Основные кинематические характеристики поступательного движения

Составляющая ускорения, направленная к центру кривизны траектории, т.е. перпендикулярно (нормально) скорости, называется нормальным ускорением Основные кинематические характеристики поступательного движения. Она характеризует изменение скорости по направлению.

Кинематичнскте характеристткт плступатедьного движения

Здесь R — радиус кривизны траектории в данной точке.

Определение пути при различных видах движения.

При равномерном движении тела путь описывается формулой S=v*t

При равнопеременном движении тела путь описывается формулой

При переменном движении тела путь описывается S = f(t)

Кинематические характеристики вращательного движения.

Вращательное движение – это такое движение, при котором все точки тела движутся по окружности, центры которых лежат на одной прямой, которая называется осью вращения.

Угловая скорость – векторная величина, равная первой производной угла поворота по времени Кинематичнскте характеристткт плступатедьного движения,

Угловое ускорение — векторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела. Угловое ускорение равно первой производной от угловой скорости по времени. Формула угловой скорости:

Связь между кинематическими характеристиками поступательного и вращательного движения.

Основные кинематические характеристики движения по прямой с постоянным ускорением: перемещение s, скорость v и ускорение a. Соответствующие характеристики при движении по окружности радиусом R: угловое перемещение j, угловая скорость w и угловое ускорение a (в случае, если тело вращается с переменной скоростью). Из геометрических соображений вытекают следующие связи между этими характеристиками:

перемещение sКинематические характеристики поступательного движенияугловое перемещение j = s/R;скорость vКинематические характеристики поступательного движенияугловая скорость w = v/R;ускорение aОсновные кинематические характеристики поступательного движенияугловое ускорение a = a/R.

Все формулы кинематики равноускоренного движения по прямой могут быть превращены в формулы кинематики вращения по окружности, если сделать указанные замены. Например:

s = vtОсновные кинематические характеристики поступательного движенияj = wt,v = v0 + atКинематичнскте характеристткт плступатедьного движенияw = w0 + at.

Связь между линейной и угловой скоростями точки при вращении по окружности можно записать в векторной форме. Действительно, пусть окружность с центром в начале координат расположена в плоскости (x, y). В любой момент времени вектор R, проведенный из начала координат в точку на окружности, где находится тело, перпендикулярен вектору скорости тела v, направленному по касательной к окружности в этой точке. Определим вектор w, который по модулю равен угловой скорости w и направлен вдоль оси вращения в сторону, которая определяется правилом правого винта: если завинчивать винт так, чтобы направление его вращения совпадало с направлением вращения точки по окружности, то направление движения винта показывает направление вектора w. Тогда связь трех взаимно перпендикулярных векторов R, v и w можно записать с помощью векторного произведения векторов:

v = wR.

Масса и импульс. Современная трактовка законов Ньютона.

Масса –1) мера инертности тела.

2) мера гравитационного взаимодействия.

3) мера энергии тела. E=m

4) мера количества вещ-ва. m=pV

Импульс (Количество движения) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

Кинематичнскте характеристткт плступатедьного движения.

Первый закон Ньютона:

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона: В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе. Кинематические характеристики поступательного движения

Третий закон Ньютона:

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Кинематические характеристики поступательного движения

Второй закон Ньютона как уравнение движения. Сила как производная импульса.

Второй закон механики гласит: произведение массы тела на его ускорение равно действующей силе, а направление ускорения совпадает с направлением силы. Такова его современная формулировка. Ньютон сформулировал его иначе: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует. Т.е. Ньютон в формулировке второго закона оперирует понятием количества движения, понимаемым как мера движения, пропорциональная массе и скорости. Количество движения – величина векторная (Ньютон учитывал направление движения при формулировании правила параллелограмма скоростей).Но это понятие в истории науки не удержалось (и сейчас заменено понятием импульса), поскольку было неясно, чем измерять движение.

Второй закон Ньютона -  ускорение, приобретаемое материальной точкой,  пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

                                a  =  F/m

Эта формула выражает основной закон движения.

 Более общая формулировка второго закона Ньютона – скорость изменения импульса материальной точки равна действующей на нее силе.

                               F = d p/dt

Третий закон Ньютона и закон сохранения импульса.

Закон сохранения импульса гласит, что суммарный импульс изолированной системы не изменяется со временем.

Принцип относительности Галилея.

Принцип относительности Галилея — принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы. Отсюда следует, что никакими механическими опытами, проводящимися в какой-либо инерциальной системе, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно.

Работа и кинетическая энергия. Мощность.

Механическая работа – физическая величина, определяющаяся произведением силы вдоль направления перемещения на пройденный путь.

Основные кинематические характеристики поступательного движения

Кинетическая энергия – физическая величина, равная половине произведения массы тела на квадрат его скорости.

Основные кинематические характеристики поступательного движения

Мощностью P называется отношение произвольной работы W к времени t, в течение которого совершается работа.

Консервативные и диссипативные силы.

В физике консервативные силы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует определение: консервативные силы — такие силы, работа которых по любой замкнутой траектории равна 0.

Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.

Диссипативные силы — силы, при действии которых на механическую систему её полная механическая энергия убывает (то есть диссипирует), переходя в другие, немеханические формы энергии, например, в теплоту.

Потенциальная энергия во внешнем поле сил. Понятие о градиенте. Потенциальная энергия взаимодействия.

Закон сохранения энергии в механике.

Кинематичнскте характеристткт плступатедьного движения

   Таким образом, в изолированной системе, в которой действуют консервативные силы, механическая энергия сохраняется. В этом состоит закон сохранения механической энергии. Энергия не создается и не уничтожается, а только превращается из одной формы в другую: из кинетической в потенциальную и наоборот.   Учитывая, что в рассматриваемом конкретном случае Кинематичнскте характеристткт плступатедьного движения и Кинематические характеристики поступательного движения, можно закон сохранения механической энергии записать так:

Кинематические характеристики поступательного движения

или

Основные кинематические характеристики поступательного движения

Закон сохранения импульса.

Импульсом называют векторную величину, равную произведению массы тела на ее скорость:

Основные кинематические характеристики поступательного движения

При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:

Кинематичнскте характеристткт плступатедьного движения

Закон сохранения импульса есть следствие второго и третьего законов Ньютона. Пример использования закона сохранения импульса.

Момент силы. Уравнение движения твердого тела.

Момент силы – физическая величина, равная векторному произведению радиус-вектора, (проведенного от оси вращения к точке приложения силы — по определению), на вектор этой силы. Кинематичнскте характеристткт плступатедьного движения

Момент инерции тела относительно оси. Теорема Штейнера.

Величина, численно равная произведению массы материальной точки на квадрат расстояния от оси вращения называют моментом инерции материальной точки.

Теорема Штейнера позволяет определить момент инерции тела относительно произвольной оси. , где а – расстояние между данной осью и параллельной осью, проходящей через центр масс. – момент инерции данного тела.

Описание

Положение оси a

Момент инерции Ja

Кинематические характеристики поступательного движения

Материальная точка массы m

На расстоянии r от точки, неподвижная

Кинематические характеристики поступательного движения

Основные кинематические характеристики поступательного движения

Полый тонкостенный цилиндр или кольцо радиуса r и массы m

Ось цилиндра

Основные кинематические характеристики поступательного движения

Кинематичнскте характеристткт плступатедьного движения

Сплошной цилиндр или диск радиуса r и массы m

Ось цилиндра

Кинематичнскте характеристткт плступатедьного движения

Кинематические характеристики поступательного движения

Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1

Ось цилиндра

Кинематические характеристики поступательного движения

Основные кинематические характеристики поступательного движения

Сплошной цилиндр длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его центр масс

Основные кинематические характеристики поступательного движения

Кинематичнскте характеристткт плступатедьного движения

Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его центр масс

Кинематичнскте характеристткт плступатедьного движения

Кинематические характеристики поступательного движения

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его центр масс

Кинематические характеристики поступательного движения

Основные кинематические характеристики поступательного движения

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его конец

Основные кинематические характеристики поступательного движения

Кинематичнскте характеристткт плступатедьного движения

Тонкостенная сфера радиуса r и массы m

Ось проходит через центр сферы

Кинематичнскте характеристткт плступатедьного движения

Кинематические характеристики поступательного движения

Шар радиуса r и массы m

Ось проходит через центр шара

Кинематические характеристики поступательного движения

Основные кинематические характеристики поступательного движения

Конус радиуса r и массы m

Ось конуса

Основные кинематические характеристики поступательного движения

Равнобедренный треугольник с высотой h, основанием a и массой m

Ось перпендикулярна плоскости треугольника и проходит через вершину

Кинематичнскте характеристткт плступатедьного движения

Правильный треугольник со стороной a и массой m

Ось перпендикулярна плоскости треугольника и проходит через центр масс

Кинематичнскте характеристткт плступатедьного движения

Квадрат со стороной a и массой m

Ось перпендикулярна плоскости квадрата и проходит через центр масс

Кинематические характеристики поступательного движения

Момент импульса. Закон сохранения импульса. Энергия вращения тела.

Момент импульса — характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

L=const.

Закон сохранения момента импульса гласит, что он сохраняется в замкнутой системе.

Свободные оси. Гироскопы.

Для того чтобы сохранить положение оси вращения твердого тела с течением времени неизменным, используют подшипники, в которых она удерживается. Однако существуют такие оси вращения тел, которые не изменяют своей ориентации в пространстве без действия на нее внешних сил. Эти оси называются свободными осями (или осями свободного вращения). Можно доказать, что в любом теле существуют три взаимно перпендикулярные оси, проходящие через центр масс тела, которые могут служить свободными осями (они называются главными осями инерции тела).

Для устойчивости вращения большое значение имеет, какая именно из свободных осей служит осью вращения тела.

Вращение вокруг главных осей с наибольшим и наименьшим моментами инерции оказывается устойчивым, а вращение около оси со средним моментом — неустойчивым.

Гироскопы — массивные однородные тела, вращающиеся с большой угловой скоростью около своей оси симметрии, являющейся свободной осью.

Гироскопы применяются в различных гироскопических навигационных приборах (гирокомпас, гирогоризонт и т. д.). Другое важное применение гироскопов — поддержание заданного направления движения транспортных средств, например судна (авторулевой) и самолета (автопилот) и т. д. При всяком отклонении от курса вследствие каких-то воздействий (волны, порыва ветра и т. д.) положение оси гироскопа в пространстве сохраняется.

Специальная теория относительности. Преобразования Лоренца и следствия из них.

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Интервал. Релятивистский закон сложения скоростей.

     Пусть интервал времени между двумя событиями, происходящими в одной и той же точке инерциальной системы К, равен 0. Этими событиями, например, могут быть два удара метронома, отсчитывающего секунды.

     Тогда интервал  между этими же событиями в системе отсчета K1, движущейся относительно системы К со скоростью Кинематические характеристики поступательного движения , выражается так:

Основные кинематические характеристики поступательного движения  (2.2)

     Очевидно, что  > 0. В этом состоит релятивистский эффект замедления времени в движущихся системах отсчета.

     Если <<с, то в формулах (2.1) и (2.2) можно пренебречь величиной Основные кинематические характеристики поступательного движения . Тогда ll0 и 0, т. е. релятивистское сокращение размеров тел и замедление времени в движущейся системе отсчета можно не учитывать.

Релятивистский закон сложения скоростей

     Новым релятивистским представлениям о пространстве и времени соответствует новый закон сложения скоростей. Очевидно, что классический закон сложения скоростей не может быть справедлив, так как он противоречит утверждению о постоянстве скорости света в вакууме.

     Если поезд движется со скоростью Кинематичнскте характеристткт плступатедьного движения и в вагоне в направлении движения поезда распространяется световая волна, то ее скорость относительно Земли должна равняться опять-таки Кинематичнскте характеристткт плступатедьного движения , а не Кинематические характеристики поступательного движения . Новый закон сложения скоростей и должен приводить к требуемому результату.

     Мы запишем закон сложения скоростей для частного случая, когда тело движется вдоль оси Х1 системы отсчета К1, которая в свою очередь движется со скоростью Кинематические характеристики поступательного движения относительно системы отсчета К. Причем в процессе движения координатные оси Х и Х1 все время совпадают, а координатные оси Y и Y1Z и Z1 остаются параллельными (рис. 42).

 

Основные кинематические характеристики поступательного движения

 

Рис. 42

     Обозначим скорость тела относительно К1 через 1, а скорость этого же тела относительно К через 2. Тогда релятивистский закон сложения скоростей будет иметь вид

Основные кинематические характеристики поступательного движения  (2.3)

     Если <<с  и 1<<с, то членом Кинематичнскте характеристткт плступатедьного движения в знаменателе можно пренебречь, и вместо (2.3) получим классический закон сложения скоростей: 2=1+.

     При 1=с скорость 2 также равна с, как этого требует второй постулат теории относительности. Действительно,

Кинематичнскте характеристткт плступатедьного движения

     Замечательным свойством релятивистского закона сложения скоростей является то, что при любых скоростях 1 и  (конечно, не больших с) результирующая скорость 2 не превышает с.

21. Основной закон релятивистской динамики.

Масса движущихся релятивистских частиц зависит от их скорости:

Кинематические характеристики поступательного движения                                                                    (39.1)

где m0 — масса покоя частицы, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой частица находится в покое; с — скорость света в вакууме; т — масса частицы в системе отсчета, относительно которой она движется со скоростью v. Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.

Из принципа относительности Эйнштейна, утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона

Кинематические характеристики поступательного движения

оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса.

Основной закон релятивистской динамики материальной точки имеет вид

Основные кинематические характеристики поступательного движения                                                                     

или

Основные кинематические характеристики поступательного движения                                                                 

где

Кинематичнскте характеристткт плступатедьного движения                                                            

— релятивистский импульс материальной точки.

22. Закон взаимосвязи массы и энергии покоя.

– любое тело обладает энергией уже только благодаря факту своего существования, и эта энергия, называемая собственной энергией тела, равна произведению массы тела на квадрат скорости света в вакууме. Собственную энергию тела иначе называют энергией покоя. В нее не входят ни кинетическая энергия тела, ни его потенциальная энергия во внешнем поле. Из закона взаимосвязи массы и энергии следует, что если покоящемуся телу сообщить некоторую энергию, то его масса изменится. Однако в обычных макроскопических процессах, с которыми мы имеем дело в жизни и технике, изменения массы, обусловленные изменением энергии тел, чрезвычайно малы. Так, при нагревании одного литра воды от 0 до 100 °С масса воды увеличивается всего лишь на 5×10–9 грамма. Но, например, масса Солнца из-за потерь энергии на излучение ежесекундно уменьшается более чем на 4 миллиона тонн.

23. Частицы с нулевой массой.

24. Модель идеального газа. Уравнение состояния.

Модель идеального газа удовлетворяет след. Условиям:

Собственный объём молекул газа пренебрежимо малы по сравнению с объёмом сосуда.

Столкновения молекул газа между собой и стенками сосуда абсолютно упругие.



Страницы: Первая | 1 | 2 | 3 | Вперед → | Последняя | Весь текст


Предыдущий:

Следующий: